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Abstract

The simulations of sedimentation of cylindrical particles falling against gravity are performed using a
lattice Boltzmann method. The calculations of three-dimensional translation and rotation of cylinders
are carried out. Cylindrical particle behavior is dominated by inertia e�ects associated with wakes. One
cylindrical particle may be sucked in a strong wake behind other cylinder to form an inverted `T'
cluster. The long bodies of the cylinders turn horizontal dominantly due to a force couple generated by
a high pressure at a stagnation point. These simulation results are well consistent with the experimental
results of three-dimensional cylindrical and disk particles. It is demonstrated that the lattice Boltzmann
method can handle cylindrical particles in a three-dimensional space correctly. 7 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Solid particles in ¯ows have extensive applications in various industries, such as food
process, dyes, paints, proteins, photographic emulsion, ceramics, printing and papermaking.
Some colloidal particles are spherical; other are non-spherical and may have very complex
shapes. For example, the shape of calcium carbonate extensively used in the coating industry
may be rhombohedral or cylindrical.
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Although there are comprehensive studies on the behavior of spherical particle suspensions
(Brady and Bossis, 1988; Happel and Pfe�er, 1960; Feng et al., 1994), very few studies on the
properties of non-spherical suspensions have been reported. The non-spherical particles in
®nite-Reynolds number ¯ows are di�cult to model due to the lack of e�ective mathematical
and simulation methods to handle the interactions between the ¯uid and the complex geometry
of the particles.
The ®rst experimental ¯uidization of cylinders and disks were reported by Joseph et al.

(1987). A narrow channel was used to restrict one layer cylinders to be ¯uidized under gravity.
Three-dimensional rotations were allowed for each cylinder in their experiments. They found
that the behavior of cylindrical particles is quit di�erent from that of spherical particles. The
long bodies of cylindrical particles are dominantly perpendicular to the stream lines of ¯ows. A
high pressure at the point of stagnation gives rise to a couple causing the body to turn
broadside. There are very strong wakes behind cylinders. One cylinder may be sucked into the
wakes of other cylinder to form an inverted `T' cluster, which is relatively stable for a while.
After the cylinder is sucked into the wake of the other cylinder, the strength of the wake may
be reduced, and the inverted `T' cluster may be melt. The formation of inverted `T' clusters is a
feature of cylindrical suspensions. They also observed some doublet and triplet clusters formed
by two or more cylinders ¯oating broadside. More information can be found in the article by
Joseph et al. (1987).
In a previous paper (Qi, 2000), the simulations of the ¯uidization of two-dimensional

rectangular multi-particles falling against gravity were reported. It was shown that the lattice
Boltzmann method has a capacity to deal with non-spherical particles in a two-dimensional
space. The same method will be extended to deal with three-dimensional cylindrical particles in
this paper. The calculations of three-dimensional translations and rotations of cylinders are
carried out in this simulation and results will be reported. The purpose of this paper is to
demonstrate that the lattice Boltzmann method can handle three-dimensional cylindrical multi-
particles correctly.

2. Lattice Boltzmann simulation

The lattice Boltzmann method (Wolfram, 1986; D'humieres et al., 1986; D'humieres and
Lallemand, 1987; Frisch et al., 1987; McNamara and Zanetti, 1988, Qian et al., 1992;
Dahlburg et al., 1987) has been used to simulate non-spherical particles (Ladd, 1994a, 1994b;
Koch and Ladd, 1997; Aidun et al., 1998; Aidun and Qi, 1998, Qi, 1997a, 1997b, 1999, 2000)
in ®nite Reynolds number ¯ows. In this method, the simulation domain is divided into a
discrete cubic lattice. A distribution function of ¯uid density in the lattice nodes is used to
represent ¯uid particles. A two speed model of LB simulation is used in this work. The ¯uid
particles of type one move along the axes with speed of e1 = 1 and the ¯uid particles of type 2
moves along the diagonal directions with a speed of e2 �

���
3
p
: Thus, each node has six nearest

neighbors and eight next-nearest neighbors connected by a total of 14 links. The vectors esi
representing both lattice spacing and ¯uid particle velocities in the model are listed in Table 1
for the three-dimensional case.
The lattice Boltzmann (LB) equation with a single relaxation time is given by
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fsi�x� esi, t� 1� ÿ fsi�x, t� � ÿ1t
h
fsi�x, t� ÿ f

�0�
si �x, t�

i
, �2:1�

where fsi�x, t� is the ¯uid particle distribution function, f �0�si �x, t� is the equilibrium distribution
function, t is the single relaxation time. The kinematic viscosity n is related to t by n �
�2tÿ 1�=6: In the simulations, f

�0�
si �x, t� is taken

f �0�si �x, t� � As � Bs�esi � u� � Cs�esi � u�2�Dsu
2, �2:2�

where s � 1 corresponds to the ¯uid particles moving to the near-neighbors along axial
directions; s � 2 corresponds to the ¯uid particles moving to their second-near neighbors along
diagonal directions; s � 0 and i � 0 correspond to the ¯uid particles at rest; u is the mean
velocity of ¯uid particles at a node. The coe�cients in Eq. (2.2) are

A1 � 1

9
rf , B1 � 1

3
rf C1 � 1

2
rf

D1 � ÿ1
6
rf , A2 � 1

72
rf , B2 � 1

24
rf

C2 � 1

16
rf , D2 � ÿ 1

48
rf , A0 � 2

9
rf

D0 � ÿ1
6
rf �2:3�

When solid particles are suspended in the ¯uid, the ¯uid ¯ows may hit the surface boundary of
solid particles. Ladd's (1994a) pioneer work for a moving boundary condition, in terms of a

Table 1
Spacing and ¯uid particle velocity vectors in cubic lattice in three-dimension

s i esix esiy esiz jesij

1 1 1 0 0 1

1 2 ÿ1 0 0 1
1 3 0 1 0 1
1 4 0 ÿ1 0 1

1 5 0 0 1 1
1 6 0 0 ÿ1 1
2 1 1 1 1 31=2

2 2 ÿ1 ÿ1 ÿ1 31=2

2 3 ÿ1 1 1 31=2

2 4 1 ÿ1 ÿ1 31=2

2 5 ÿ1 ÿ1 1 31=2

2 6 1 1 ÿ1 31=2

2 7 1 ÿ1 1 31=2

2 8 ÿ1 1 ÿ1 31=2
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collision rule, in the LB scheme makes simulation of a suspension in ®nite-Reynolds-number
¯ows possible. This boundary condition is expressed by

fsi 0 �x, t� 1� � fsi�x, t�� ÿ 2Bs�esi � Vb�, �2:4�
where x is the position of the node adjacent to the solid-surface with velocity Vb t� is the post
collision time which is the same as the de®nition by Ladd (1994a), i ' denotes the re¯ected
direction, and i the incident direction. The above rule is applied to the boundary nodes in both
sides of the solid-surface. As a result, a no-slip boundary condition for moving solid particles
is imposed by the collision rule in such a way that the ¯uid mass is conserved at each time step
by allowing exchange of population of ¯uid at the boundary nodes adjacent to both sides of
the solid-surface. The hydrodynamic force exerted on the solid particle at the boundary node is

F

�
x� 1

2
esi

�
� 2esi

ÿ
fsi�x, t�� ÿ Bs�Vb � esi�

� �2:5�

where Vb � V0 � OOO� xb, V0 is the velocity of the center of mass; Vb is the velocity of solid±
¯uid interface at the node; O is the angular velocity of the solid particle; xb�x� 1

2esi ÿ R, R is
the center of the corresponding solid particle. The total force FT and torques TT on the solid
particles are obtained by

FT �
X

F

�
x� 1

2
esi

�
�2:6�

TT �
X�

x� 1

2
esi ÿ R

�
� F

�
x� 1

2
esi

�
�2:7�

The summation is over all the boundary nodes in the ¯uid region associated with a particular
solid particle.
In the lattice Boltzmann method, the nodes are ®xed and the solid particles move over the

(nodes) grids. Whenever a node relatively crosses the ¯uid±solid interface and enters the solid
region, the momentum of the ¯ow at the boundary node may exert a force on the solid
particle. The force FI (Aidun et al., 1998; Qi, 1999) at the node is

FI�x, t� � rf�x, t�u�x, t� �2:8�
where rf is the density of the ¯uid at the node. Similarly, whenever a node relatively crosses
the solid±¯uid interface and leave the solid region, the ¯ow in the node should add a force FO

on the solid particle, i.e.

FO�x, t� � ÿrf�x, t�u�x, t� �2:9�
The present approach still allows ¯uid to enter the inside of solid to conserve the total mass of
¯uid at each time step. The conservation of ¯uid mass guarantees the recovery of the Navier±
Stokes equations from LB method. This is particularly important for multiparticles. If the ¯uid
mass in the system is not conserved due to the existence of a single solid particle, this
unconservation of ¯uid mass will be accumulated due to the existence of multiparticles.
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Therefore, the function of the ¯uid within solid region is to ensure that the Navier±Stokes
equations are valid in the ¯uid region.
A proper calculation of rotation of non-spherical particles in a three-dimensional space is

necessary in simulations. The details about the calculation have been described in Qi (1997a,
1997b).
The translations of the mass center of each particle are updated at each Newtonian dynamic

time step by using a so-called `velocity-Verlet' scheme (Swope et al., 1982). The scheme is
written as:

R�t� dt� � R�t� � dtV0�t� � 1

2
dt2F�t�=M �2:10�

V0�t� dt� � V0�t� � 1

2
dtF�t�=M� F�t� dt�=M �2:11�

where R is the position of the mass center of a solid particle, F is the total force on the solid
particle, and M is the mass of the solid particle.
The reliability of the LB simulation of suspensions at ®nite Reynolds numbers has been

evaluated by comparing LB simulation results with both ®nite-element and experimental results
(Qi, 1999).

3. Fluidization of cylindrical particles

3.1. Simulations

The size of the simulation box is 140� 30� 150 initially. Four walls are ®xed at x � 0,
x � 140, y � 0 and y � 30, respectively. The length, l, of a cylinder is 24 and the diameter, D,
is 12. The cross section of the cylinder is shown in Fig. 1 and the ends of the cylinder are
rounded by an arc of radius 1.5. The cylinder is formed by revolving the cross section around
z±z axis.
The size of the channel used allows the cylinders to rotate in the three-dimensional space.

An array of 16 cylinders is initially located in a regular order in the channel and the Euler
angles f, y, and c for all the cylinders are set to 458 908 and 08, respectively, as shown in the
leftmost image in the top row of Fig. 2. The ¯uid velocity at the bottom boundary is set to
zero and this boundary is always 42.84 ahead the bottom particle. The ¯uid distribution at the
bottom nodes is reset by f

�0�
si �x, t� � As at u � 0 at each time step. Whenever the bottom

particle move over one lattice distance, a layer of ¯uid is added at the bottom nodes with the
same condition. The stress at the top boundary is set to zero and the boundary is always 32.17
behind the top particle. The ¯uid particles in the vertical links and diagonal links are copied
from the top nodes to the next-top nodes at each time step. Whenever the top particle moves
over one lattice unit, the top ¯uid is removed. Therefore, the simulation box is expanded in the
gravity direction during simulation due to relative movement among the particles and the
boundary conditions used in this work. The ®nal global particle Reynolds number is 16.92,
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which is de®ned by Re � Vf � l=n, where Vf is the ®nal global velocity of particles. The
corresponding solid density is 1.035. It has been assumed that the ¯uid density is 1.
Fig. 3 shows the global average velocity of all particles in the settling direction. The particle

velocity increase during initial settling and then become stable with a small oscillation.

3.2. Orientation of cylinderrs

The simulations provide all dynamical information, such as the positions and velocities of
solid particles and the velocities of ¯ows. Therefore, the macrostructure of particles can be
easily analyzed from this information.
The cylinders collectively turn horizontal quickly as shown in the top row of Fig. 2. Then

their positions and orientations become more random due to strong interactions between the
cylinders and the ¯ows. However, the longer bodies of the cylinders are dominantly oriented in
the horizontal direction on an ensemble average. The cylinders in a vertical direction are not
stable, they may turn to the horizontal direction. Stable doublets formed by two cylinders
¯oating broadside are observed, as shown in Fig. 2. The polar angle, y, can be used to
characterize the orientation and measure the degree of a cylinder perpendicular to the vertical
direction. An angular distribution function (ADF) is adopted to statistically evaluate the
orientation of a random suspension of cylinders. The ADF is de®ned as a probability of
®nding a single cylinder with a given polar angle y per unit angle and written as

f�y� � 1

n

X
i

hd�y� ÿ d�yi�i �3:1�

Fig. 1. The ends of a cylinder are rounded by an arc and the cylincer is formed by revolving the cross section
around z±z axis.
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Fig. 2. Snap shots of sedimentation of 16 three-dimensional cylinders with ®nal global Re � 16:92: The images in
the ®rst row from the left to right correspond to a time order at t = 0, 5000 and 10,000, those in the second row
correspond to t = 15,000, 20,000 and 25,000, and those in the third row corresponding to t = 30,000, 35,000,

40,000, 45,000.
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Fig. 3. The global velocity in the settling direction as a function of time for the cases with ®nal Re � 16:92: The

Fig. 4. The angular distribution function (normalized to 1) is shown at ®nal particle Reynolds number Re � 16:92:
Since the settling direction is in the z-direction, the polar angle y � p=2 corresponds to the horizontal direction.
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Fig. 5. The inverted T clusters formed by two cylinders and some doublets are shown. The con®gurations are the
same as those in Fig. 2 except that other type of clusters are intentionally suppressed to show the inverted T clusters

and some doublets more clearly.
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where d is Dirac delta function, h�i stands for an ensemble average, and n is the total number
of the cylinders.
The ensemble average of the angles is carried out for 100 con®gurations, each 200 time-step

apart. The results for the periods from t � 10,000 to t � 30,000 are shown in Fig. 4.
It is clearly observed that the long bodies of cylinders broadside are always dominated

during settling as shown in Figs. 2 and 4. The probability is much larger at y � 908 than at
other angles, indicating that the horizontal angle ordering is a feature of slender body in
sedimenting ¯ows. A high pressure is produced in the front side of a particle and a wake is

Fig. 6. projection of velocity on x±z plane at y � H=2 is shown, where H is the thickness of the simulation box. The
section is the same as the rightmost images in the third row of Fig. 2 corresponding to t = 30,000. A complex

velocity ®eld with wakes is observed. The shaded circles represent the cross sections of cylinders. The values of the
arrows representing the ¯uid velocities are scaled in an arbitrary unit.
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generated on the back. The high pressure at the stagnation points gives rise to a couple causing
the body to turn broadside. This has been explained clearly by Joseph et al. (1987) and Huang
et al. (1994).

3.3. Structure of clusters

One cylindrical particle may be sucked in strong wakes behind other cylinder to form an
inverted `T' cluster, this is a drafting and kissing process. The inverted `T' cluster may be
stable for a short period. After sucking a cylinder, the strength of the wake may be reduced,
and the inverted `T' cluster is melt or dispersed. The inverted `T' clusters, each formed by two
particles, are shown in Fig. 5. In these ®gures, the inverted `T' clusters and some doublets are
shown, other clusters are intentionally suppressed in order to see them clearly.
Drafting, kissing and melting may be used to characterize the behavior of aggregation and

dispersion due to multi-particle interaction governed by inertia wake e�ects. These simulation
results are well consistent with the experimental work of Joseph et al. (1987) who found the
similar behavior of non-spherical particles.
A complex velocity ®eld in the simulation box at t � 30,000 is shown in Fig. 6. As expected,

there are many wakes behind cylinders.

4. Conclusions

Fluidization of 16 cylindrical particles falling under gravity has been simulated by using the
lattice Boltzmann method. The calculations of three-dimensional translations and rotations of
cylinders are included in the simulation. An angular distribution function is used to describe
the orientation of the cylinders and the results show that the long bodies of cylinders turn
horizontal dominantly during falling. Relative stable doublets formed by two cylinders ¯oating
broadside are observed.
One cylinder may be sucked into a strong wake behind other cylinder to form an inverted

`T' cluster. Drafting, kissing and melting may be used to describe the interaction between the
cylinders. These behavior dominated by the e�ects of inertia are well consistent with the
experimental works of Joseph. It has been demonstrated that the LB method has a capacity to
handle non-spherical particles in the three-dimensional space. Valuable discussions with
Professor D. Joseph, A.J.C. Ladd and D. Koch are greatly appreciated.
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